
Aggregate Function

COUNT()
The COUNT function returns the number of values present in a particular column.

Syntax:
SELECT COUNT(column_name)
FROM table_name
WHERE condition;

SUM()
The SUM function returns the sum of values in the specified column.

Syntax:
SELECT SUM(column_name)
FROM table_name
WHERE condition;

AVG()
The AVG function returns the average of values in a specified column.

Syntax:
SELECT AVG(column_name)
FROM table_name
WHERE condition;

MIN()
The MIN function returns the smallest value of a specified column.

Syntax:
SELECT MIN(column_name)
FROM table_name
WHERE condition;

MAX()
The MAX function returns the maximum value of a specified column.

Syntax:
SELECT MAX(column_name)
FROM table_name
WHERE condition;

Set Operators

UNION
The UNION operator returns all rows from both tables, after eliminating duplicates.

Syntax:
SELECT column1 FROM table 1
UNION
SELECT column 2 FROM table 2;

The result of listing all elements in A and B eliminating duplicates is {1, 2, 3, 4, 5, 6, 7, 8}.

If you joined A and B you would get only {4, 5}. You would have to perform a full outer
join to get the same list as above.

INTERSECTION
The INTERSECT operator returns all rows common to both tables.

Syntax:
SELECT a_id FROM a INTERSECT
SELECT b_id FROM b;

The result of listing all elements found in both A and B is {4, 5}.

EXCEPT
EXCEPT returns distinct rows from the left input query that aren't output by the right
input query.

Syntax:
SELECT a_id FROM a EXCEPT
SELECT b_id FROM b;

The result of listing all elements found in A but not B is {1, 2, 3}.
The result of B MINUS A would give {6, 7, 8}.

SQL Joins
An SQL JOIN clause is used to combine rows from two or more tables, based on a
common field between them.

Types of SQL join operations
● INNER JOIN
● LEFT JOIN
● RIGHT JOIN
● OUTER JOIN

INNER JOIN
Inner join only takes those rows from the Cartesian Product Table where the join
elements match fully.
Inner join condition will create result by combining all rows from both tables where the
value of common filled will be the same.

Example:
Product

PID PName

1 Shirt

2 Punjabi

3 Lungi

Sale

SID ProductID Price

101 1 1000

102 2 800

103 5 400

104 2 600

Query: Select * from Product p Inner join Sale s on p.PID = s.ProductID;

PID Pname SID ProductID Price

1 Shirt 101 1 1000

2 Panjabi 102 2 800

2 Panjabi 104 2 600

LEFT JOIN

Left join takes those rows which are in the inner join output. And it also looks for the
rows in the left table which are not in the inner join output. The rows are added to
OUTPUT with null in right columns.

Example:
Product

PID PName

1 Shirt

2 Punjabi

3 Lungi

Sale

SID ProductID Price

101 1 1000

102 2 800

103 5 400

104 2 600

Query: Select * from Product p Left join Sale s on p.PID = s.ProductID;

So the output of the join table is shown below.
In the left table Product |PID = 3 | Pname = Lungi|
row could not be joined with any row of Sale table. So it is added with null value in
right columns

PID Pname SID ProductID Price

1 Shirt 101 1 1000

2 Panjabi 102 2 800

2 Panjabi 104 2 600

3 Lungi null null null

RIGHT JOIN
Right join takes those rows which are in the inner join output. Also looks for the rows
in the right table which are not in the inner join output. The rows are added to OUTPUT
with null in the left columns.

Example:
Product

PID PName

1 Shirt

2 Punjabi

3 Lungi

Sale

SID ProductID Price

101 1 1000

102 2 800

103 5 400

104 2 600

Query: Select * from Product p Right join Sale s on p.PID = s.ProductID;

So the output of the join table is shown below.
In the right table Sale |SID = 103|ProductID = 5|Price = 400|row could not be joined
with any row of Product table. So it is added with null value in the left columns.

PID Pname SID ProductID Price

1 Shirt 101 1 1000

2 Panjabi 102 2 800

2 Panjabi 104 2 600

null null 103 5 400

OUTER JOIN
Aside from inner join output Outer join looks for the rows in the left table which are
not in inner join output. The rows are added to OUTPUT with null in right columns.
Similarly the rows from the right table not in the inner join output are added to
OUTPUT with null values in left columns.

Example:
Product

PID PName

1 Shirt

2 Punjabi

3 Lungi

Sale

SID ProductID Price

101 1 1000

102 2 800

103 5 400

104 2 600

Query: Select * from Product p Outer join Sale s on p.PID = s.ProductID

PID Pname SID ProductID Price

1 Shirt 101 1 1000

2 Punjabii 102 2 800

2 Punjabi 104 2 600

3 Lungi null null null

null null 103 5 400

In the 4th row there is no joinable row on the right. So the right values are null. Similarly
in the 5th row there is no joinable row in the left. So left values are null.

CROSS JOINS
The CROSS JOIN is used to generate a paired combination of each row of the first table
with each row of the second table. This join type is also known as cartesian join.
A cross join produces a cartesian product between the two tables, returning all possible
combinations of all rows.
Syntax:
SELECT column_name(s)
FROM table1
CROSS JOIN table2;

Example:
Product

PID PName

1 Shirt

2 Punjabi

3 Lungi

Sale

SID ProductID Price

101 1 1000

102 2 800

103 5 400

104 2 600

Query: Select * from table 1 CROSS JOIN table 2;

PID Pname SID ProductID Price

1 Shirt 101 1 1000

1 Shirt 102 2 800

1 Shirt 103 5 400

1 Shirt 104 2 600

2 Panjabi 101 1 1000

2 Panjabi 102 2 800

2 Panjabi 103 5 400

2 Panjabi 104 2 600

3 Lungi 101 1 1000

3 Lungi 102 2 800

3 Lungi 103 5 400

3 Lungi 104 2 600

